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The linear problem of the stability of a boundary layer on a flexible surface with respect to small two-dimensional perturbations 
in the form of travelling waves is considered. A boundary-layer model with self-induced pressure (a three-layer model) is used 
to describe the fluid flow. The flexible surface is modelled by a thin plate lying on an elastic base. It is shown that, in the system 
in question two forms of loss of stability are possible: Tollmien-Schlichting instability and instability caused by the action of 
hydrodynamic pressure on the surface around which the flow occurs. A special feature of the latter form of instability is that 
there is no neutral system of perturbations or a sudden onset of instability. The solutions obtained are analysed and the conditions 
leading to the appearance of such instability are established. 0 2003 Elsevier Science Ltd. All rights reserved. 

An analysis of the natural vibrations of a boundary layer and of a flexible surface over which a flow 
occurs is of interest in investigating the effect of the vibration of a wall on the transition from a laminar 
boundary layer to a turbulent boundary layer. In essence, it reduces to solving the Orr-Sommerfeld 
problem with modified boundary conditions reflecting the response of an elastic boundary to the action 
of pressure pulsations. Interest in the problem arose after the publication of experimental results [l] 
in which it was established that there is a reduction in frictional drag on an underwater missile which 
has a flexible coating of special construction. 

The stability of the boundary layer on a flexible surface has been considered by many investigators. 
It was shown in [2-4] that, in the case of flow past a flexible boundary, three types of instability are 
possible: class A, class B, and Kelvin-Helmholtz instability and, moreover, the existence of the internal 
drag of the wall leads to destabilization of class A waves and stabilization of class B waves, while 
Kelvin-Helmholtz instability depends only slightly on the internal drag of the wall and arises when the 
effective rigidity of the elastic wall becomes too small to compensate for the action of the pressure forces. 
Waves of class A have been identified with Tollmien-Schlichting waves and waves of class B have been 
compared with the waves generated on the free surface of water by a wind. Both types of waves have 
also been detected in a boundary layer. 

As a result of the modelling of a compliant surface in general form by specifying the ratio of the 
pressure on the surface to its deformation, it has been established [5] that the ability of a wall to deform 
itself in a direction normal to the surface affects the stability of laminar flow to a significantly greater 
extent than its ability to deform itself in a tangential direction. Later [6], the problem of stability was 
studied in a similar formulation. 

It was shown in [4-61 that a flexible surface can stabilize a flow as a result both of an increase in the 
critical Reynolds number and a reduction in the rate of growth of perturbations, but it can also lead 
to the destabilization of the flow. In order to stabilize a flow, a flexible wall must have [4] a small internal 
drag in order to damp class,4 waves and, at the same time, sufficient drag to suppress class B waves, 
while the flexibility must not be so great as to give rise to Kelvin-Helmholtz instability. Doubt has 
therefore been expressed that the results of Kramer’s experiments can only be explained on the basis 
of the linear theory of stability [4]. 

Subsequent papers were directed towards studying the effect of the parameters of a flexible surface 
on the stability of the flow in more detail (see, [7,8]) and, also, making a thorough survey and comparison 
of the theoretical and experimental results [7, 91. An attempt was made in [7, 81 to model the surface 
used in Kramer’s experiments as closely as possible, and the effect of the parameters of the surface on 
the stability of the different classes of waves was investigated. The main conclusion drawn in [7, 81 is 
that a flexible surface can, in principle, lead to the persistence of laminar conditions but, in practice, 
the existence and interaction of the different types of waves in the boundary layer makes it very unlikely 
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that, in particular, the unsuccessful attempts to confirm Kramer’s results experimentally could be 
explained by this. 

As a result of a study of the non-linear development of wave packets consisting of Tollmien-Schlichting 
waves, it has been shown [lo] that the elasticity of the surface leads to the delay of the transition from 
laminar to turbulent conditions. 

In this paper it is shown that, in addition to the known types of instability, one other type of instability 
is possible when a viscous fluid flows past a flexible surface: the system suddenly transfers from a stable 
position to an unstable position. A discontinuous form of the behaviour of the system as a consequence 
of the compliance of the wall has been obtained previously [ 101 as a consequence of the chosen model 
of the surface, over which the flow occurs, leading to singularities in the dispersion equation. It is shown 
below that discontinuous instability of the boundary layer occurs when the flexible surface itself loses 
stability under the action of the induced hydrodynamic pressure. Here, the instability displays the 
properties of both classA and class B. The conditions under which such instability occurs are determined 
and an explanation of the mechanism of its origin is suggested. 

1. FORMULATION OF THE PROBLEM 

Consider the flow of an incompressible viscous fluid at high Reynolds numbers past a semi-infinite plate 
with a flexible coating. The plate is planar in the unperturbed state. A Cartesian system of coordinates 
x* and y* is chosen such that the x* axis lies in the plane of the unperturbed plate and they* axis is 
directed upwards. The leading edge of the plate corresponds to the value x* = -L. We shall assume 
that the unperturbed fluid flow is two-dimensional and, far upstream, has a velocity U, parallel to the 
x* axis. We define the Reynolds number in the form Re = U,LIv, where v is the kinematic viscosity 
of the fluid. We shall study two-dimensional perturbations in the boundary layer on the flexible surface 
and treat the linear stability problem in a time-dependent formulation. 

We will assume that the parameters of the perturbations which arise are such that the fluid flow can 
be described by the three-deck asymptotic theory of a boundary layer (the theory of a boundary layer 
with a self-induced pressure). In this case, it is assumed that the perturbations are characterized by a 
wavelength O(LE~), an amplitude O(L$) and a frequency O(UJ(LE’)), where the small parameter 
E = Re-n8, which is characteristic of the three-deck theory, has been introduced. In order to describe 
transient processes, a theory has been developed in many papers of which we note [ll-131 (see the 
review of other papers which make use of three-deck theory [14]). According to this theory, three 
domains with very different properties are formed when an unsteady boundary layer interacts with an 
outer flow Ill]. The upper domain with characteristic size y* = O(LE~) is the domain of interaction 
with the outer potential flow. The middle domain (y* = O(L$)) corresponds to the main boundary 
layer in which the viscosity is also neglected but the flow is rotational. In the lower domain (y* = O(La5)), 
the viscosity plays a decisive role in forming the flow pattern. The pressure is produced in the lower 
domain and is transmitted across the middle domain to the outer flow. All the characteristic changes 
in the flow in each domain are defined in a length scale O(Le3). 

Appropriate expansions of the required values and scales of the change in the independent variables 
using a small parameter E are introduced in each domain, and solutions are constructed in the upper 
and middle domains [ll, 121. The flow in the lower domain is described in the principal approximation 
by Prandtl-type equations. By obtaining a solution in the lower domain and matching the solutions in 
all three domains, it is possible to obtain (for example, see [1.5]) a description of the flow for the whole 
of the boundary layer. 

For the purposes of the present investigation, it is sufficient to restrict ourselves solely to considering 
the flow in the lower domain. The independent variables are specified by the expressions 

x* = E3Lx, y* = GLy, t* = 2Ltl u, 

where t* is the dimensional time. The components of the velocity vector U* and u* and the pressure 
p* are represented in the form of the expansions 

U* = &[E(/(x,y,t)+O(E*)], U * = l/_[E3V(X,y,t)+O(E4)] 

$ = p: +Pl/:[E2P(X,y,t)+O(E3)] 

(1.1) 

wherepf is the pressure in the unperturbed flow and p is the fluid density. 
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Substituting expressions (1.1) into the Navier-Stokes equations, we obtain, in the case of the principal 
terms in the expansions, the Prandtl-type equation 

-+&+,?!L ap; a2u au 
at ax ay 

F-O ar/+av=, 
ax ay2 ’ ax ay ’ ay- (14 

The difference lies in the fact that the perturbed pressure P(,K, t) is not taken from the outer flow 
problem but is determined by the interaction of the flows in the upper and lower domains through the 
main domain of the boundary layer. This interaction is established by the folloving conditions. Matching 
of the solutions of the potential problem in the upper domain and the solutions in the main domain 
of the boundary layer leads to the condition (the condition of free interaction) 

I (1.3) 

The arbitrary functionA(x, t) has the meaning of the magnitude of the instantaneous displacement of 
the stream lines in the main domain of the boundary layer. 

Matching of the expansions in the lower and main domains of the boundary layer gives the limiting 
condition 

U(x, y, t) + hy + A.A(x, t) when y + 00 (1.4) 

The quantity y is determined from the Blasius solution U,(y,) for the unperturbed boundary layer using 
the formula h = dUb(0)/dyz, where y2 = y*/(,!z4) is the vertical coordinate corresponding to the main 
domain of the boundary layer. 

The three-deck theory actually accomplishes the link across the main domain of the boundary layer 
between the outer domain and the viscous domain, which is adjacent to the surface over which the flow 
occurs. This interaction is established by condition (1.4) which matches the lower and main domains, 
and relation (1.3) which matches the main domain with the outer domain of the boundary layer. 

Note that the quantity y can be eliminated from the treatment by means of a change of variables 
[ll]; we shall therefore henceforth assume that y = 1. 

The no-slip conditions 

U(x,q,t)=O, “(x,q,t)=~ 

where n(x, t) is the vertical displacement of the plate surface from its unperturbed position, are satisfied 
on the surface over which the flow occurs and which is defined by the equationy = ~(x, t). Here, it is 
assumed that each point of the flexible surface executes an oscillatory motion solely in a vertical direction. 

We shall model the flexible surface [7] as a thin plate lying on an elastic base, the motion of which 
is described by the equation (in dimensionless form) 

mfi+,~+Da% $11 -- 
at2 at ax4 z+Krl=F (1.6) 

where m is the mass per unit area, d is the drag coefficient, D is the flexural rigidity, T is the longitudinal 
tension per unit width, K is the stiffness of the elastic base and F is the external force. In all the subsequent 
calculations, for simplicity, we shall neglect the longitudinal stress and stiffness of the elastic base that 
is, we shall put T = K = 0. The effect of these parameters will be indirectly estimated later. 

In determining the force F acting on the plate, we shall assume that all the changes in the position 
of the plate occur solely due to the action of pressure and we shall neglect the action of shear stresses 
and the normal component of the viscous stresses. We must then put F = 9(x, t). 

System of equations (1.2) with condition (1.3) and boundary conditions (1.4) and (1.5) defines a non- 
linear boundary-value problem in a domain with moving walls for finding solutions that are periodic 
with respect to the x coordinate. The problem has the trivial solution U = y, I/ = 0, P = 0, which 
corresponds to the unperturbed boundary layer. We shall consider the perturbed solution of problem 
(1.2)-(1.5) by representing the solution in the form U = y + U, V = n, P = p and assuming that the 
perturbations of U, u and p are small. We shall study the stability of the boundary layer in the domain 
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situated at a sufficient distance from the initial segment of the plate, where the perturbations can be 
treated as travelling waves. 

It has been shown in [13] that the description of the stability of a boundary layer on a solid surface, 
based on three-deck theory, corresponds to the lower branch of the neutral stability curve at high 
Reynolds numbers. Our subsequent treatment will therefore correspond to the stability of a boundary 
layer with respect to long-wave perturbations. 

2. THE LINEAR STABILITY PROBLEM 

Searching for perturbations in the form of travelling waves, we represent the solution in the form 

u = y - @eikrtor, u = ik&iutuw, p = u@‘~, 111~ qoeik’tw (2.1) 

where a is the amplitude of the pressure, J(y) is the amplitude of the stream function. k is the wave 
number, q. is the amplitude of the displacement of the surface over which the flow occurs, o is the 
complex frequency of the oscillations, and a prime denotes differentiation with respect toy. The real 
part of the frequency w = w, + hi characterizes the increase (0, 7 0) or the attenuation (0, < 0) of 
the perturbations with time. 

We will also require that the arbitrary function A+, t) should satisfy the periodicity condition with 
respect to the x coordinate Condition (1.3) then leads to the equality 

A(x,rj = +_(a / k)eikrtw (2.2j 

where the upper sign is taken when k > 0 and the lower sign when k < 0. 
We now substitute expressions (2.1) into system of equations (1.2). Linearizing the first equation of 

(1.2) with respect to the amplitude a of the perturbations, we obtain an equation for the functionf(y) 

f”-(w+iky)f+ikf+ik=O (2.3) 

The second and third equations of system (1.2) are satisfied identically. 
Linearizing boundary conditions (1.5) around the unperturbed surface we obtain the conditions for 

perturbations of the velocity [4] 

u+~~=O,v=dq/& when y=O 

The boundary conditions on the wall for the stream function then take the form 

f = Il&(iku), f = To/u when y = 0 (2.4) 

The limiting condition (1.4), where we have put A = 1, gives, taking equality (2.2) into account 

f=+Tilk when y+w (2.5) 

Boundary-value problem (2.3)-(2.5) differs from the problem formulated earlier in [ll, 121 in the 
boundary conditions on the wall. When solving problem (2.3)-(2.5) we shall follow the known procedure 
[ll]. We differentiate Eq. (2.3) and introduce the variable z = o)(ik)-*‘” + (ik)“3y, where ] arg z ] < n/3 
when y + 00. As a result, we obtain the fourth-order equation 

d4f /dz4 -zd=f ldz= =0 (2.6) 

The boundary conditions are 

f=,,,,o/(ih), df/dz=(qola)(ik)-“3, d3fldz3 =-I when z=oW)-2’3 

df I dz + Ti(ik)4’3 when z + 0~ 

(2.7) 

We write the solution of Eq. (2.6) for the second derivative of the stream function f in the form 

&fldz2 = cAi(z) 
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where Ai is the Airy function, which decreases in the sector ] arg z ] c rc/3, and c is an arbitrary 
constant. 

On satisfying the boundary conditions when z = w(ik)-2’3, we obtain a solution in the form 

!=- dAi(<) -“’ [ 1 j]Ai(z,)dz,dz +X(ik)-“3z, < = O(ik)-2’3 
dz cs a 

The last of conditions (2.7) leads to the equation 

In the limit when no + 0, Eq. (2.8) gives the dispersion equations obtained in [12] for the case of a 
solid wall. Note that, in the case of a solid wall, the quantity a is simply a multiplicative constant and 
does not appear in the dispersion equation. 

We obtain an expression for the pressure from relation (2.8) in the form 

a = q,k /[k4’3N(<) T l] (2.9) 

We obtain the dispersion equation by equating the pressure in the fluid on the surface over which 
the flow occurs and the normal stresses which are developed in the flexible surface due to the action 
of the deformations TJ = nOerkr+@‘. From Eq. (1.6) where we have put T = K = 0, we obtain 

qo(rn& + do + DP) = -a (2.10) 

The left-hand side of this equality is the sum of the inertial, frictional and elastic components. 
Substituting expression (2.9) into Eq. (2.10) we obtain the dispersion equation 

1 = &k4j3 + 
k7/3 

No mo2+dw+Dk4Tk 
(2.11) 

The signs are chosen in accordance with the rule described above (see formula (2.2)). Next, we will 
investigate waves which propagate in the positive direction of the x axis and we shall therefore assume 
that k > 0 everywhere and, correspondingly, take the upper sign on the right-hand side of Eq. (2.11). 

Equation (2.11) differs from the dispersion equation for the case of a solid wall [12] in that there is 
a second term on the right-hand side: It can be shown that the limiting case of a solid wall (q. + 0) is 
equivalent to the requirement that the quantities m, D and d should tend to infinity. 

The construction of the eigenvalue spectrum is well known in the case of a solid wall. The spectrum 
consists of a denumerable set of complex numbers which are determined, generally speaking, by the 
zeros of the Airy function [16]. A graphical representation of the behaviour of the first three roots 
accompanying a change in the wave number has been given in [12,17]. The solution, which loses stability, 
is determined by the first root of the dispersion equation and, here, the values o = -2.298i, k = 1.0005 
correspond to a neutral state [12]. 

3. NUMERICAL INVESTIGATION OF THE ROOTS 
OF THE DISPERSION EQUATION 

The characteristic frequencies o(k) were calculated from Eq. (2.11) for a fixed value of the shear stiffness 
D = 10 and values of the mass of the plate m = 10, 4, 3, 2, 1 and 0.1. The cases of a non-dissipative 
plate (d = 0) and plates with internal drag (d = 0.5 and 0.1) were considered. The behaviour of the 
roots of the dispersion equation in the complex plane w = w, + ioi as a function of a change in the 
wave number k, which is a parameter, is shown in Fig. 1. The wave number values indicated for them 
correspond to the open circles. 

The case of a drag-free plate (d = 0) is represented by the solid curves in Fig. l(a). The curve for 
m = 10 differs only slightly from the corresponding curve for the case of a rigid wall (which is not shown 
in Fig. la). However, instability sets in at somewhat higher values of the wave number (when k = 1.02, 
we have o = -0.0003-2.3228i) compared with the case of a rigid wall (k = 1.0005). This suggests some 
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stabilization of the flow when the wall is made compliant. When the mass of the plate is reduced 
(m = 4), the transition to an unstable state is even more delayed. Form = 4 when k = 1.085, we have 
o = -0.00037-2.42041’. However, in the unstable state, the rate of growth of the perturbations We for 
values of the wave number greater than k = 1.24 is increased for rn = 4 compared with m = 10. 

Note that a reduction in the mass of the plate leads to an increase in the phase velocity of free flexural 
waves c = (D/m)“*k. It can be seen that an increase in cI, led to an increase in the wave number (by 
appro&ately 10%) corresponding to the neutral state. As was pointed out above, the three-deck 
boundary layer model which is used corresponds to the lower branch of the neutral curve in the case 
of high Reynolds number. However, this behaviour of the wave number, corresponding to the lower 
branch of the neutral curve, with respect to the velocity of free shear waves has been established in [7] 
in the case of not very high Reynolds numbers (of the order of (2-4) x 103) close to the initial segment 
of the neutral curve. So, when the modulus of elasticity of the plate material was doubled, the wave 
number corresponding to the neutral state also increased by 10% ([7], Fig. 11). 

The effect of the wall drag (d = 0.5) is shown by the dashed lines in Fig. l(a). When m = 10, this 
effect is unimportant in practice but it is more noticeable when m = 4. It is seen that the frequency 
curve is displaced to the unstable state side. For example, a wave, which, when k = 1.085 and d = 0, 
was stable, loses stability when drag is introduced and the value of the frequency becomes equal to 
w = 0.0132-2.40771’. When k > 1.3, the wall drag practically ceases to affect the growth rates of the 
perturbations. 

The introduction of wall drag therefore leads to destabilization of the flow. This behaviour of the 
perturbations corresponds to the well-known fact that internal wall drag destabilizes Tollmien- 
Schlichting waves which belong to waves of class A [3, 4, 71. 

Calculations show that, in the stable state form = 3 and 2, the attenuation rate of the perturbations 
is considerably greater than in the cases when m = 10 and m = 4. However, in the case when k = 1.12 
(o = -0.1737-2.5221i), the curve form = 3 terminates abruptly and continues when k = 1.13 from the 
point o = 0.3109-2.39641’ in the right-hand half-plane, and a significant growth rate of the perturbations 
is seen. The curve form = 2 behaves in a similar manner but the discontinuity in the solution occurs 
earlier: when k = 1.02, we have w = -0.3190-2.42801’ and, when k = 1.03, we have w = 0.3634-2.23461’. 
Note that there is a reduction in the phase velocity of the wave c = -q/k at the instant of time when 
the discontinuity occurs. 
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It is seen from the graphs form = 3 and m = 2 that, in the case of internal wall drag (d = OS), there 
are also discontinuities in the solutions but they occur at smaller values of the wave number, that is, 
instability sets in earlier. This involves a definite destabilization of the flow when wall drag is introduced, 
that is, the waves behave in the same way as classA waves. However, a positive effect is seen with respect 
to the rate of growth (attenuation) of the perturbations: wall drag stabilizes the flow in the stable and 
in the unstable state, but this property is characteristic of class B waves [7]. Note that the effect of wall 
drag when m = 2 and m = 3 is more pronounced than in the cases when m = 4 and m = 10. 

The behaviour of the frequencies at mass values m = 1 and m = 0.1 is shown by the solid lines for 
d = 0 and the dashed lines ford = 0.1 in Fig. l(b). When m = 1, the attenuation rate in the stable 
state o, is significantly greater than when m = 2 and m = 3. The discontinuity in the solution sets in 
when k = 0.86 (w = -0.4337-2.21901). When k = 0.88, the curve, corresponding to m = 1, continues 
in the right-hand half-plane from the point o = 0.3370-2.02831’. 

A characteristic feature was observed in the unstable state when m = 1: the frequency curve 
approaches the imaginary axis when k = 1.1. The discontinuity in the solution when m = 1 and 
d = 0.1 corresponds to the range of wave numbers k = 0.78486. 

When the mass is reduced to a value of m = 0.1, the frequency curve emerges, when k = 0.56, from 
the point w = 0.4729-1.5474i and intersects the imaginary axis at k = 0.65 and k = 0.89, that is, a neutral 
state of perturbations appears. When m = 0.1 and d = 0.1, the frequency curve starts, when k = 0.56, 
from the point w = 0.3201-1.39% It is clear from a comparison with the curve for m = 0.1 and 
d = 0 that wall drag at wave numbers k < 0.6 decreases the growth rate of the perturbations and it 
increases them somewhat when k > 0.6. 

The behaviour of the roots at small wave numbers is shown by the solid curves for d = 0 and the 
dashed line for d = 0.1 in Fig. 2. The frequency curves emerge from the point o = 0 and are located 
in the left half-plane as in the case of a rigid wall [12]. When m = 0.1 and d = 0, the frequency curve 
makes a loop and emerges into the upper half-plane where the solution abruptly terminates at 
approximately k = 0.43. Wall drag at low wave numbers has a weak effect on the behaviour of the 
frequencies for m = l-10. When m = 0.1 and d = 0.1, it is seen that the wall drag, when k < 0.41, 
destabilizes the flow (a property of class A waves) and, when k > 0.41, it stabilizes the flow (class B 
waves). 

So, when m = 0.1, conditions are possible when a wave travels with a low phase velocity or is completely 
arrested and changes into a standing wave. Such a state of motion is well known in aero-elasticity as 
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“static divergence”. It has been studied experimentally [lS] and, moreover. slowly moving waves were 
only observed in a boundary layer in which turbulence had artificially been created. 

Hence, depending on the ratio of the plate parameters, two different forms of loss of stability exist: 
when m = 10 and m = 4, the transition to unstable conditions is characterized by the onset of 
Tollmien-Schlichting waves and, when m = 3, 2, 1 or 0.1, there is no neutral oscillatory state and 
instability sets in abruptly. 

Generally speaking, this behaviour is atypical of linear systems. Hence, further confirmation of the 
results which have been obtained is required. A superficially similar phenomenon was possibly observed 
in [7]. In that paper, it was noted that, for certain parameters of a flexible plate, a sharp change in the 
solutions was discovered for a very small change in the wave number or the Reynolds number and, also, 
that sometimes it was impossible to find a neutral oscillatory state 17, pp. 490 and 5021. It was suggested 
[7] that these effects are associated with the interaction of the modes, that is, similar eigenvalues arc 
responsible for modes which correspond to waves of class A and class B. This question has not been 
studied in detail. 

4. ANALYSIS OF THE FORMS OF LOSS OF STABILI’TY 

It was established above that the discontinuous solutions have the properties both of ciass A and of 
class B waves. It is well known that the fluid viscosity is important in the generation and loss of stability 
of Tollmien-Schlichting waves (class4 waves) while class B waves are mainly determined by the flexibility 
of the surface around which the flow occurs and can also exist in an inviscid flow [3,4, 81. It is also well 
known that instability of class B waves arises under the action, on the surface 7(x, t) over which the 
flow occurs, of the pressure component which is in phase with the wave inclination d@x and is 
proportional to the second derivative of the velocity profile calculated in the critical layer, where the 
phase velocity of the wave is equal to the flow velocity [3,8]. In the case being considered, that is, when 
the three-deck model is used, the velocity profile is linear and the generation of instability must occur 
by a different mechanism. 

Moreover, in the boundary layer, class B waves propagate with a phase velocity c = -w,ik which is 
close to the velocity of free flexural waves c;, = (D/m)"'%. In the case being considered, for example 
when m = 3 and k = 1, the velocity of the wave c = 2.20 while c,, = 1.82, that is, there is a significant 
difference between the velocities. At the same time, the role of viscosity in the occurrence of 
discontinuous instability remains unexplained; hence we cannot attribute the discontinuous solutions 
to class B waves in the traditional sense. An energy treatment is necessary in order to gain a clearer 
idea of the character of the waves in question. We shall not discuss the solution of this problem but 
confine ourselves to examining the formal properties of the solutions which have been obtained. 

4.1. Neutral conditions. We will now consider neutral conditions for a flow over a plate without internal 
drag. When d = 0, we represent dispersion equation (2.11) in the form (2.10) 

rno2 + Dk4 = kl[l- k%(C,)] (4.1 I 

In the case of neutral conditions, the frequency is a pure imaginary quantity: w = io,, where 
w* > 0, and this means that the left-hand side of Eq. (4.1) must be real. In order that Eq. (4.1) should 
be satisfied, the quantity N(c) must be real. We will find the values of < = a(ik)-“’ for which this is 
possible. The corresponding values of < must lie on the half-line arg < = -5rr/6. We put c = e-s”i’6<0, 
where h > 0. The results of a calculation of N(c) = N, + iN, as a function of the change in &, as well 
as the parameter when co > 1.5 are presented in Fig. 3. When 0 < co < 1.5, the curve N(c) lies in the 
lower half-plane. 

When co > 6, the curve N(c) practically merges with the real axis and tends asymptotically to zero 
when <a -+ m, remaining in the upper half-plane. This can be shown by considering the asymptotic 
expansion of the function N(c) for large values of <. In the sector 1 arg < 1 c n, we have the expansion 

(4.2) 

where the fractional powers of c take their principal values. Then. on the half-line arg 5 = -Src/6, 
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Note that formula (4.2) retaining just the first two terms, gives an error of less than 1% when 
io = 6. 

The calculations show that the curve N(c) intersects the real axis (that is, the function N(c) becomes 
real) at just a single point (when < = 2.2972Y5”“) and, at this point, /V(c) = 0.99936-O.OOOOli = 1. 

It is easy to determine from this that, under neutral conditions, the frequency and wave number are 
connected by the relation w = -2.2972k”‘i. This result only holds in the case of non-dissipative plates 
and, also, for the case of a rigid wall. 

Note that the number a = 2.2972, or a number which is close to it, is sometimes encountered in the 
analogous formulae in problems of hydrodynamic stability. This number is the argument for which the 
Tietjens function becomes real (see, for example, [13, 191). It turned out that the function N(c) is closely 
associated with the above-mentioned Tietjens function. 

4.2. The non-existence of neutral conditions. We will now find the conditions under which neutral 
conditions for the oscillations of a non-dissipative plate can exist. We will represent the frequency of 
the oscillations in the form o = -cxk*“i. With an accuracy which is sufficient for the purposes of this 
investigation, we put N(c) = 1. Equation (4.1) then takes the form 

-moM + Ilk4 = k/(1 -kg) (4.3) 

that is, a relation is obtained which the wave number must satisfy under neutral conditions. This relation 
can be considered as an equation which determines, for a specified mass and stiffness of the plate, the 
wave number for which the effective stiffness of the plate (the left-hand side of the equation) 
compensates for the induced hydrodynamic pressure (the right-hand side). 

Denoting the left-hand side of Eq. (4.3) by Z,,(k) and the right-hand side by F(k), we represent the 
graphical solution of Eq. (4.3) for D = 10 in Fig. 4. Neutral perturbations are determined by the points 
of intersection of the curves Z,,(k) and F(k). Having determined the wave number, it is then possible 
to find the frequency of the oscillations. 

The curve F(k) has a positive branch when k < 1 and a negative branch F-(k) when k > 1. When 
nz = 10 and m = 4, there are two points of intersection of the curves F-(k) and Z,(k). When the mass 
of the plate is reduced, the intersection points merge and, subsequently, the intersection disappears 
(m = 3, 1). When th e mass m is reduced further, an intersection of the curves again appears but now 
with the branch F+(k) when k < 1 (m = 0.1). We see that neutral oscillatory conditions do not exist 
for all ratios between the mass and stiffness of the plate. A reduction in the mass of the plate gives rise 
to a reduction in the absolute magnitude of the effective stiffness Z,(k). For a sufficiently small value 
of Z,,(k), real values of the wave numbers, for which the effective stiffness can compensate for the 
induced pressure, do not exist and, consequently, neutral oscillatory conditions do not exist. The non- 
existence of neutral conditions indicates the possibility of the emergence of discontinuous solutions. 
However, it follows from the calculations presented in Section 3 that all the solutions when m < 3 are 
discontinuous and instability sets in abruptly. 

It is clear that, taking account of the longitudinal stress T and the stiffness of the elastic base Kin 
Eq. (4.1) would lead to a shift of the point where the curves F-(k) and Z,(k) touch in the direction of 
larger wave numbers. The appearance of discontinuous solutions would then be expected at larger wave 
numbers. However, the existence of a compressive stress (T < 0) would lead to the opposite effect. 
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The non-existence of neutral conditions for flow over a flexible surface at certain values of the 
parameters has been noted previously in [6]. 

4.3. The uniqueness of the neutral solution. The points of intersection of the curves F+(k) and Z,,(k) 
when m = 0.1 correspond to the results presented in Fig. l(b). When m = 10 and m = 4, the point of 
intersectionAl of the curves F-(k) and Z,(k) in Fig. 4 corresponds to the neutral solution in Fig. l(a). 
The existence of the pointAz in Fig. 4 enables us to postulate the existence of another root of dispersion 
equation (4.1), that is, it can be postulated that there are two neutral waves which propagate with 
velocities cl,2 = ok$. Then, when the mass of the plate is reduced, these two roots merge, that is, the 
waves overtake one’another and interact, which leads to a situation similar to that which arises in the 
problem of the flutter of an infinite plate or in the case of Kelvin-Helmholtz instability [3, 41. Effects 
associated with the non-existence of neutral perturbation conditions have been explained in [7] by a 
similar merging and interaction of modes. 

In the case being considered here, the situation is different. One of the waves simply does not exist. 
We shall now show this to be so and assume that the points of intersection Ai and A2 of the curves 
F-(k) and Z,(k) correspond to two different roots of dispersion equation (4.1). Then, the point of contact 
of the curves must define a double root of Eq. (4.1). The frequency of the oscillations found here must 
satisfy Eq. (4.1) differentiated with respect to w. We carry out this differentiation and represent the 
result in the form 

(4.4) 

It is seen that, under neutral conditions, when the frequency is a pure imaginary quantity, the right- 
hand side of Eq. (4.4) is pure imaginary. However, it has already been established (Section 4.1) that, 
under neutral conditions, the parameter < is must necessarily be equal to the quantity oemsnij6. The exact 
value of the left-hand side of Eq. (4.4) is at the same time equal to the complex quantity 0.40863-0.544381. 
It follows from this that Eq. (4.4), ’ in g eneral, does not have pure imaginary solutions, that is, the point 
of contact of the curves F-(k) and Z,(k) does not define a double root of the initial equation (4.1). 
Consequently, the point of intersection AZ in Fig. 4 also does not define a root of Eq. (4.1) and 
corresponds to a spurious wave. 

So, it has been established that there is no interaction between the waves in the case being considered 
and each wave develops individually. 

4.4. The asymptotic solution. We will now consider the behaviour of the solutions of dispersion equation 
(4.1) in the case of large wave numbers. It follows from the calculations that the parameter < = w(ik)f ’ 
increases as the wave number increases and -rr < arg 5 < -7r/2. We now make use of the asymptotic 
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representation of the function N(c) for large < in the form of (4.2). Retaining the first two terms, we 
substitute expansion (4.2) into Eq. (4.1) and reduce it to the form 

kw + 
rnw* + Dk4 

An approximate solution of this equation for large k and < is written in the form 

o = -ik2 + eni” + O(k-‘) 

that is, the solution is located in the right-hand half-plane. 
Hence, for large values of the wave number, the solutions of the dispersion equation (4.1) always 

define an unstable wave. However, it has been shown that, in the case of small wave numbers, the 
solutions of the dispersion equation lie in the left-hand half-plane (Fig. 2) and it has been shown in 
Section (4.2) that neutral perturbation conditions do not always exist. It follows from this that an abrupt 
loss of stability is possible for certain values of the plate parameters. The existence of discontinuous 
solutions can therefore be considered to be well founded. 

5. CONCLUSION 

We will now establish the physical reasons for the emergence of discontinuous solutions. We extrapolate 
the frequency values beyond the critical point o(k,) (that is, beyond the discontinuity point) and calculate 
the values of the amplitudes of the hydrodynamic pressure a and the stresses a, which arise in the plate 
due to deformations 

k 
a= 

k%(c) - 1’ 
U, = ~(wF - 03) - Dk4 - 2imopi 

Specifying a wave number increment Ak, we carry out a frequency extrapolation using the formula 

o(k)=o(k,)+~Ak, k=k,+Ak 

Here kc is the value of the wave number at the point where the solution terminates and &.o/dk = -Ck/Gw, 
where Gk, G, are the derivatives with respect to k and w of the dispersion relation G(o, k) = 0. 

Calculations form = 2 and m = 3 show that, when k > kc, the real parts of the quantities a and a, 
are different, a, > usr > 0 and the imaginary parts are practically identical. Calculation of the phase 
shift cp, cps between the vertical velocity of the plate surface V, = Q,(o, + ioi)e*k’+wr and the stresses 
(a, uS)eikx+wr shows that cps < cp < xl2 when k > k,. 

The following pattern of the development of instability is then possible. Under stable conditions, that 
is, when o, < 0, the total energy of the perturbations of the fluid and the oscillations of the plate must 
tend to zero. If we have a non-dissipative plate, it must transfer its own energy to the fluid, where energy 
dissipation is possible either due to viscosity or due to the transfer of energy to the main flow by means 
of Reynolds stresses. For this to happen, the plate must perform work against the action of the pressure 
forces. The flow of energy, averaged over the wavelength, which is transferred by the plate to the fluid 
is given by the equation 

(pus) = -(%)w,(m 1 w I* +Dk4) 

and, moreover, it must be positive. Its magnitude for a specified value of the frequency o is regulated 
by the phase shift cp < 7V2 and by the magnitude of the pressure components a, ui. When k < kc, such 
an interaction is possible and, at the point kc, the plate can no longer provide the phase difference cp 
and the magnitude of the stresses a, required for energy transfer. The elastic and inertial forces, which 
are developed by the plate, cannot compensate for the action of the pressure forces due to the fluid. 
In particular, when m = 2 or m = 3, the plate cannot counterbalance the pressure component a,, which 
is in phase with the displacement of the surface, since the inertia of the plate is too small. As a result, 
when k = k,, the plate “snaps”, that is, the plate instantaneously changes its orientation and the flow 
becomes unstable, 
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Analogies of such behaviour in mechanical systems have been known for a long time. As an example, 
we can cite the problem of the snapping of weakly distorted elastic plates under the action of a distributed 
load, which was solved by Bubnov in 1902 [20]. 

Note that the abrupt instability which is being considered differs from the instability of class B waves 
that occurs under the action of a pressure component which is in phase with the slope of the wave. 
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